Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biosensors (Basel) ; 12(9)2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2032846

ABSTRACT

Human beings continue to endure the coronavirus disease (COVID-19) pandemic, which has spread throughout the world and significantly affected all countries and territories, causing a socioeconomic crunch. Human pathogenic viruses are considered a global burden for public health, both in the present and the future. Therefore, the early and accurate diagnosis of viruses has been and still is critical and should be accorded a degree of priority that is equivalent to vaccinations and drugs. We have opened a Special Issue titled "Conjugated polymers-based biosensors for virus detection". This editorial seeks to emphasize the importance and potential of conjugated polymers in the design and development of biosensors. Furthermore, we briefly provide an overview, scientific evidence, and opinions on promising strategies for the development of CP-based electrochemical biosensors for virus detection.


Subject(s)
Biosensing Techniques , COVID-19 , Viruses , COVID-19/diagnosis , Humans , Pandemics , Polymers
2.
Biosens Bioelectron ; 182: 113192, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1157149

ABSTRACT

Rapid, accurate, portable, and large-scale diagnostic technologies for the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) are crucial for controlling the coronavirus disease (COVID-19). The current standard technologies, i.e., reverse-transcription polymerase chain reaction, serological assays, and computed tomography (CT) exhibit practical limitations and challenges in case of massive and rapid testing. Biosensors, particularly electrochemical conducting polymer (CP)-based biosensors, are considered as potential alternatives owing to their large advantages such as high selectivity and sensitivity, rapid detection, low cost, simplicity, flexibility, long self-life, and ease of use. Therefore, CP-based biosensors can serve as multisensors, mobile biosensors, and wearable biosensors, facilitating the development of point-of-care (POC) systems and home-use biosensors for COVID-19 detection. However, the application of these biosensors for COVID-19 entails several challenges related to their degradation, low crystallinity, charge transport properties, and weak interaction with biomarkers. To overcome these problems, this study provides scientific evidence for the potential applications of CP-based electrochemical biosensors in COVID-19 detection based on their applications for the detection of various biomarkers such as DNA/RNA, proteins, whole viruses, and antigens. We then propose promising strategies for the development of CP-based electrochemical biosensors for COVID-19 detection.


Subject(s)
Biosensing Techniques , COVID-19/diagnosis , Electrochemical Techniques , SARS-CoV-2/isolation & purification , Biomarkers , Humans , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL